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Abstract

imputeMulti is an R package for imputation of multivariate multinomial missing data
via expectation-maximization and data augmentation algorithms. The package allows the
specification of Bayesian priors, including data-dependent priors. For performance, calcu-
lation of the summary statistics of the multinomial distribution is implemented in C++;
imputeMulti also supports these calculations in parallel. As a result, the imputeMulti
package capably handles large datasets. In this article, we introduce the package’s func-
tionality and provide a hands-on approach to solving multinomial missing data problems.
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1. Introduction
As Honaker, King, and Blackwell (2011) noted, “missing data is a ubiquitous problem [es-
pecially] in social science data. Respondents do not answer every question, countries do not
collect statistics every year, archives are incomplete, [and] subjects drop out of panels. Most
statistical analysis methods, however, assume the absence of missing data, and are only able
to include observations for which every variable is measured." In the past several decades,
widely available methods have been developed for missing value imputation allowing practi-
tioners to move beyond ad-hoc methods such as casewise-deletion and mean imputation, to
more advanced methods such as multiple imputation Rubin (1987), expectation maximization
Dempster, Laird, and Rubin (1977), chained equations van Buuren and Groothuis-Oudshoorn
(2011), and data augmentation Tanner and Wong (1987). However, many of these methods
assume the data comes from a multivariate normal distribution, which ignores missing data
from a variety of other distributions.
imputeMulti performs missing data imputation for the common multivariate multinomial
distribution. Like other imputation methods, this method creates a “filled in" version of
the incomplete data so that analyses which require complete observations can appropri-
ately use all the data in a dataset containing missingness. imputeMulti uses the familiar
expectation-maximization (EM) and data augmentation (DA) algorithms to estimate the pa-
rameter estimates of the multinomial distribution and maximum likelihood to impute missing
observations.
Two issues which make multivariate multinomial missing data imputation challenging are the
memory required to store all possible combinations of the variables of interest and the compu-
tation time required to calculate both the complete data sufficient statistics and the missing
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data marginal sufficient statistics. To overcome these performance challenges, imputeMulti
uses C++ via Rcpp Eddelbuettel and Francois (2011) and also allows for parallel processing
via parallel R Core Team (2016).
imputeMulti provides advantages over other popular imputation methods such as Amelia
Honaker et al. (2011), mice van Buuren and Groothuis-Oudshoorn (2011), and Hmisc Harrell
Jr and others. (2016) when working with multinomial data. The most important advantage
is higher imputaton accuracy for multinomial data relative to any of Amelia, mice, and
Hmisc. Secondly, imputeMulti provides researchers easy access to the multinomial parameter
estimates. In many cases, the parameter estimates may be of more interest to researchers
than the observation level imputations. One disadvantage of imputeMulti is longer run time
than Amelia or Hmisc, although imputeMulti is faster than mice. Run time is impacted by
unique aspects of the the multinomial distribution which will be discussed below.
The remainder of the paper proceeds as follows: Section 2 provides a brief discussion of multi-
nomial missing data problems; Section 3 provides a user’s guide to imputeMulti; Section 4
compares imputeMulti with alternative imputation methods; and Section 5 concludes.

2. Multinomial missing data
imputeMulti is an implementation of the imputation methods for multivariate multinomial
missing data found in (Schafer 1997, Chapter 7). An abbreviated discussion of multivariate
multinomial missing data is provided below. To facilitate use of this reference text, the same
notation as Schafer (1997) is used throughout this discussion.
To begin, let Y1, Y2, . . . , Yp be categorical variables each taking a finite number of values Yj ∈
{1, 2, . . . , dj}; j = 1, 2, . . . , p. If the observations are independent and identically distributed
(iid), then we can reduce Y to a contingency table with D cells, where D =

∏p
j=1 dj is the

number of distinct combinations of the levels of Y1, Y2, . . . , Yp. The cell counts of D are
denoted by xd, d = 1, . . . , D. If the sample size is n, then x has a multinomial distribution:

x|θ ∼ M(n, θ) (1)

with parameter vector θ = (θ1, θ2, . . . , θD). The likelihood function for the multinomial
parameter θ is

L(θ|Y ) ∝
D∏

d=1
θxd

d IΘ(θ) (2)

where IΘ(θ) is an indicator function equal to 1 if θ ∈ Θ and 0 otherwise. This leads to the
well known maximum likelihood estimates (MLE):

θ̂d = xd

n
, d = 1, . . . , D (3)
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2.1. The Bayesian case and the Dirichlet prior
The simplest way to conduct Bayesian inference on a multinomial model is to assume a
Dirichlet prior Ferguson (1973), which is typically denoted by the parameter vector α =
(α1, α2, . . . , αD). The prior and posterior of θ with a Dirichlet prior are thus written in
shorthand as

θ|α ∼ D(α) (4)
θ|Y ∼ D(α′) (5)

where α′ = (α1 + x1, α2 + x2, . . . , αD + xD). The posterior mean is

E(θ|Y ) =
(

α′
1

α′
0
,
α′

2
α′

0
. . . ,

α′
D

α′
0

)
(6)

with α′
0 =

∑D
d=1(αd + xd) = α0 + n.

As is typical in Bayesian analyses, the choice of prior can have important effects on the out-
come of missing value imputation for multinomial data. In addition to no prior, imputeMulti
supports three choices of prior. When little prior information is known, a noninformative
prior may be a sensible choice. If the sample size is large relative to the number of parame-
ters being estimated, a noninformative prior will have little impact on model inferences. The
choice used in imputeMulti is twice the Jefferys prior, c = 1, which provides proper posterior
modes of θ.1 Another choice of prior is a flattening prior α = (c, c, . . . , c) for some c > 1.
A final choice available in imputeMulti is the data-dependent prior, whose aim is to take a
peek at the data, via some summary statistics for instance, prior to analysis. Discussion and
criticism of the use of data-dependent priors is beyond the scope of this article. Interested
readers are referred to Darnieder (2011).

2.2. Characterizing the multivariate multinomial missing data problem
At the core of all imputation methods is that we do not completely observe the data x, but
instead only observe part of it. In the multinomial case, assume that we have grouped the
observed data into their observed patterns xobs and their missingness patterns xmis. Index
the missingness paterns by s = 1, 2, . . . , S and define a set of indicator variables:

rsj =
{

1 if Yj is observed in s
0 if Yj is missing in s

Let Os(y) and Ms(y) respectively denote the sets of observed and missing variables within
each missingness pattern and with elements defined

Os(y) = {yj : rsj = 1} (7)
Ms(y) = {yj : rsj = 0}. (8)

1Using the Jefferys prior, c = 1
2 , can produce improper posterior modes. Specifically, if αy < 1 and the

corresponding count xy is zero, then θ̂y will be negative.
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Since most missing observations are partially observed, within each missingness pattern s,
observations are cross-classified by their observed variables. The distinct partially observed
patterns are denoted x(s); and their counts tabulated into a table denoted

zs
Os(y) =

∑
Ms(y)∈Ms

x(s) for all Os(y) ∈ Os. (9)

The marginal probability that an observation falls within a given cell of this table of partially
observed values is denoted

βOs(y) =
∑

Ms(y)∈Ms

θy. . (10)

And the observed-data loglikelihood contribution from the partially observed data is

l(θ|Yobs) =
S∑

s=1

∑
Os(y)∈Os

zs
Os(y)log

(
βOs(y)

)
. (11)

The EM algorithm for maximizing the complete-data loglikelihood is straightforward, with
the multivariate case first described by Fuchs (1982). For the E-step, we find the expected
summary statistics given the observed data and the current value of theta,

E(xy|Yobs, θ) =
S∑

s=1
zs

Os(y)θy/βOs(y). (12)

This leads to the trivial M-step. Under maximum-likelihood, set θ̂ = E(xy|Yobs, θ)/n for all
y ∈ Y . A minor modification is made to maximize the complete-data posterior density under
a Dirichlet prior θ̂y = (xy +αy −1)/(n+α0 −D) for all y ∈ Y where α0 =

∑D
i αi and D is the

number of parameters. Similarly, different minor modifications can be made to convert the
EM algorithm to data-augmentation. For DA, instead of proportionally allocating the counts
of partially missing observations to fully observed xobs counts based on the current value of
θ as in Equation 12, the proportional allocation is replaced by a random allocation based on
the current value of θ.

3. Software user’s guide
We now turns to the practical matter of using imputeMulti, which is freely available as a
package for the statistical software R R Core Team (2016) and can be run in any environment
that R can. R is freely available from https://www.r-project.org/. To install impute-
Multi from a CRAN (Comprehensive R Archive Network) mirror, simply type the following
command in the R command prompt,

R> install.packages("imputeMulti").

https://www.r-project.org/


Alex Whitworth 5

If you wish to use the most current development version, you can install it from Github. This
is most easily done using the devtools package Wickham and Chang (2016), via

R> devtools::install_github("alexWhitworth/imputeMulti").

To keep imputeMulti up to date, you should use the R command update.packages().

3.1. Example data

To illustrate imputeMulti, we use simulated (ACS) American Community Survey data for
individuals living in census tract 2221 in Los Angeles County, California. The data was sim-
ulated using spatial microsimulation Orcutt et al. (1961). This dataset contains ten variables
on 3,974 individuals. Missing values have been inserted, independently and at random, to
seven of the ten variables. A detailed description of the dataset can be found by typing
?tract2221 into the R console.

R> library("imputeMulti")
R> data("tract2221")

Beyond being useful to illustrate the use of imputeMulti, the data also serves to illustrate one
constraint on multivariate multinomial missing data imputation—combinatorial explosion. If
we choose to use all ten variables in the model, the number of distinct combinations which
may be observed is extremely high. Using the previously introduced notation, D =

∏p
j=1 dj =

8, 467, 200. Given that seven variables have missing values, the number of possible distinct
combinations of marginally observed variables is even higher at 38,707,200. In R, an integer
vector of this size requires 155 MB of memory and a corresponding data.frame, which is
needed to store zs

Os(y), requires 1.7 GB of memory. If our model were substantially larger, we
would quickly run into base R’s constraint on matrix size of 2 billion elements.
One option to alleviate the memory constraint is the use of a package that stores objects
locally, such as bigmemory Kane, Emerson, and Weston (2013). But alleviating memory
concerns does not impact the larger problem of factorial runtime—O(p!)—factorial in the
number of variables p. One approach is the use of a multivariate normal distribution to
provide an approximate solution. The approach suggested in this guide is to instead find an
exact solution to an approximate problem. That is, to decompose the set of all variables into
subsets of related variables; and to find an exact solution for each subset.
Run-time constraints are not the only benefit of decomposing an increasingly large set of
variables. An additional benefit is that complex, higher-order, interactions may be poorly
estimated by the fully saturated multinomial model. In these situations, it is often useful to
simplify the model by selectively removing some of the highest order associations.
In this dataset, for example, the researcher might decide that income, poverty and employment
statuses, educational attainment, age, and gender are closely related and thus group age,
gender, edu_attain, pov_status, emp_status, and ind_income into one subset. Further,
she might consider marital status, race, nativity, and geographic mobility to all be closely
related. This would lead to a second subset of marital_status, nativity, geog_mobility,
and race. This is the approach that we uses here to illustrate the use of imputeMulti.
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3.2. Imputation via expectation-maximization

The primary user-facing function for imputeMulti is multinomial_impute, which provides
observation level imputation for multinomial data. Various options can be specified to per-
form multinomial imputations using EM or DA along with the specification of one of four
possible priors: ‘none’, ‘non.informative’, ‘flat.prior’, or ‘data.dep’. These options
for imputing missing values via EM are now illustrated, starting without the use of a Bayesian
prior.

R> set.seed(2134L)
R> imputeEM_none <- multinomial_impute(tract2221[,c(1:2,4,7,9)],

method = "EM", conj_prior = "none", verbose = TRUE)

Here, method = "EM" is specified for the expectation-maximization algorithm and conj_prior
= "none" for a strictly maximum likelihood estimate. The parameter verbose = TRUE is
specified to provide informative intermediate outputs. The option parallel = TRUE can also
be specified to compute the sufficient statistics in parallel. In practice, this only provides a
performance improvement for exceptionally large datasets and thus the default is currrently
parallel = FALSE.

[1] "Calculating observed data sufficient statistics."
[1] "Setting up Iteration 1."
Iteration 1 : log-likelihood = -32083.8393739337
Convergence Criteria = 0.0160612788 ...

Iteration 2 : log-likelihood = -24079.2963400782
Convergence Criteria = 0.0043943837 ...

.... output truncated ....
Iteration 119 : log-likelihood = -23650.2292737947
Convergence Criteria = 0.0000004931 ...

[1] "Imputing missing observations via MLE results."

Typical of EM, convergence is quite rapid. By changing the argument conj_prior, Bayesian
priors may be specified. The other options for conj_prior are shown below

R> imputeEM_non <- multinomial_impute(tract2221[,c(1:2,4,7,9)],
method = "EM", conj_prior = "non.informative", verbose = TRUE)

R> imputeEM_flat <- multinomial_impute(tract2221[,c(1:2,4,7,9)],
method = "EM", conj_prior = "flat.prior", alpha = 10L, verbose = TRUE)

R> imputeEM_data <- multinomial_impute(tract2221[,c(1:2,4,7,9)],
method = "EM", conj_prior = "data.dep", verbose = TRUE)

where a flat prior may be specified as a scalar by the parameter alpha. Note the use of a
strong flat prior in this example.
In addition to observation level imputation, some users may only be interested in the param-
eter estimates. imputeMulti allows for this type of analysis as well. To do so, first compute
the observed and marginally-observed summary statistics via multinomial_stats and then
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estimate the parameters directly with your choice of prior via multinomial_em. An example
of this is shown below.2

R> x_y <- multinomial_stats(tract2221[,c(1:2,4,7,9)], output = "x_y")
R> z_Os_y <- multinomial_stats(tract2221[,c(1:2,4,7,9)], output = "z_Os_y")
R> x_possible <- multinomial_stats(tract2221[,c(1:2,4,7,9)],

output = "possible.obs")

R> imputeEM_mle <- multinomial_em(x_y, z_Os_y, x_possible,
n_obs = nrow(tract2221), conj_prior = "none", verbose = TRUE)

[1] "Setting up Iteration 1."
Iteration 1 : log-likelihood = -32096.9776607773
Convergence Criteria = 0.0157098212 ...

Iteration 2 : log-likelihood = -24086.0109006056
Convergence Criteria = 0.0030262731 ...
.... output truncated ....

Iteration 101 : log-likelihood = -23650.2320024124
Convergence Criteria = 0.0000004888 ...

The outputs of these functions will be examined in Section 3.4.

3.3. Imputation via data-augmentation

Using imputeMulti for DA is very similar to the use for expectation-maximization. The
chief functional difference is using method = "DA" instead of method = "EM". Imputation of
observation level data is still done via multinomial_impute; and, the choice of prior can be
controlled by conj_prior. An example is shown below using the second subset of variables
discussed at the beginning of this Section.

R> imputeDA_none <- multinomial_impute(tract2221[,c(3,6,9:10)],
method = "DA", conj_prior = "none", verbose = TRUE, burnin = 100)

[1] "Calculating observed data sufficient statistics."
[1] "Setting up Iteration 1."
Iteration 1 : log-likelihood = -26927.4017334082 ...
Iteration 2 : log-likelihood = -18571.4267260919 ...
.... output truncated ....

Iteration 99 : log-likelihood = -18369.0208750788 ...
Iteration 100 : log-likelihood = -18381.5414370566 ...
[1] "Imputing missing observations via MLE results."

Parameter estimates via DA can also be easily obtained via multinomial_data_aug in a
similar fashion to EM.

2The differences in log-likelihood and convergence criteria in the displayed output of multinomial_impute
and multinomial_em are due to random seeding of initial parameters. These random differences in initial
parameter values lead to differences of only (<0.003) in final log-likelihood.
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R> imputeDA_mle <- multinomial_data_aug(x_y, z_Os_y, x_possible,
conj_prior = "none", verbose = TRUE,
burnin = 100, post_draws = 1000)

With DA, the number of burnin samples is controled via burnin for both multinomial_impute
and multinomial_data_aug. burnin defaults to 100. Parameter estimates are calculated as
the posterior mean based on post_draws draws, which can again be specified for both func-
tions. The default is 1000 draws.

3.4. Examining imputed outputs

imputeMulti uses S4 classes. Both multinomial_em and multinomial_data_aug return
mod_imputeMulti-class objects while multinomial_impute returns imputeMulti-class
objects. The imputeMulti-class class inherits from the mod_imputeMulti-class. Sev-
eral methods are available for summarization and extracting elements from the class objects.
However, most users will be interested in only two methods of the imputeMulti-class ob-
ject: get_parameters which extracts the parameter estimates, and get_imputations which
extracts the imputed observation level data.3

R> param_est <- get_parameters(imputeEM_none)
R> imputed_data <- get_imputations(imputeEM_none)

Since neither multinomial_em nor multinomial_data_aug impute at the observation level,
the get_imputations method does not exist for mod_imputeMulti-class objects.
To recombine imputed data with the original dataset, utilize the fact that imputeMulti main-
tains both row order and rownames. Recombining imputed and original data can therefore be
done via a simple replacement or by merging via rownames. The latter method is implemented
in imputeMulti and both methods are shown below:

R> tract_imp <- data.frame(imputed_data, tract2221[, c(3,6,9:10)])
R> tract_imp <- merge_imputed(imputeEM_none, tract2221[,c(3,6,9:10)])

Researchers can also examine the parameter estimates directly. For example, researchers
may be interested in the marginal distribution of θ̂ by gender and educational attainment
among those aged eighteen to thirty-four compared to those aged fifty to sixty-four. Here a
comparison is shown for a "non.informative" and "flat.prior", which also illustrates the
impact of the previously chosen strong flat prior.

R> param_est_non <- get_parameters(imputeEM_non)
R> param_est_flat <- get_parameters(imputeEM_flat)

We first extract the marginal statistics and then normalize θ̂ within each age group. The
impact of the choice of prior on θ̂ is then shown in Tables 1 and 2.

3Other methods for these classes can be found in the documentation. See ?’mod_imputeMulti-class’ and
?’imputeMulti-class’.
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R> pe_non18 <- param_est_non[param_est_non$age %in%
c("18_24", "25_29", "30_34"),]

R> pe_non50 <- param_est_non[param_est_non$age %in%
c("50_54", "55_59", "60_64"),]

R> non_theta18_34 <- sum(pe_non18$theta_y)
R> non_theta50_64 <- sum(pe_non50$theta_y)
R> marg_non18 <- tapply(pe_non18$theta_y,

list(pe_non18$gender, pe_non18$edu_attain), sum)
R> marg_non50 <- tapply(pe_non50$theta_y,

list(pe_non50$gender, pe_non50$edu_attain), sum)
R> round(marg_non18 / non_theta18_34, 4)
R> round(marg_non50 / non_theta50_64, 4)

R> pe_flat18 <- param_est_flat[param_est_flat$age %in%
c("18_24", "25_29", "30_34"),]

R> pe_flat50 <- param_est_flat[param_est_flat$age %in%
c("50_54", "55_59", "60_64"),]

R> flat_theta18_34 <- sum(pe_flat18$theta_y)
R> flat_theta50_64 <- sum(pe_flat50$theta_y)
R> marg_flat18 <- tapply(pe_flat18$theta_y,

list(pe_flat18$gender, pe_flat18$edu_attain), sum)
R> marg_flat50 <- tapply(pe_flat50$theta_y,

list(pe_flat50$gender, pe_flat50$edu_attain), sum)
R> round(marg_flat18 / flat_theta18_34, 4)
R> round(marg_flat50 / flat_theta50_64, 4)

The marginalized estimates of θ̂ with a non-informative prior show that education levels
have improved over time as the younger cohort has higher estimated parameters for ‘some
college’ or higher educational attainment. It is also clear that there is greater gender equality
in educational outcomes for the younger cohort. But the analyst would not draw these
conclusions using a strong flat prior. As expected, a strong flat prior exerts substantial
smoothing effects on the estimates of θ̂. While there is a large range in parameter estimates
for the non-informative prior, all estimates for the flat prior have been smoothed to near 0.07.
This comparison shows that, as with most Bayesian analyses, the results of imputation of
multinomial data can be quite sensitive to the choice of prior.

Ages 18-34 lt_hs some_hs hs_grad some_col assoc_dec ba_deg grad_deg
Female 0.0507 0.0421 0.1523 0.1251 0.0000 0.0912 0.0205
Male 0.0423 0.0928 0.0922 0.1141 0.0187 0.1197 0.0383
Ages 50-64
Female 0.1260 0.0866 0.1304 0.1051 0.0405 0.0000 0.0318
Male 0.1704 0.0980 0.0357 0.0471 0.0575 0.0710 0.0000

Table 1: Estimates of the marginal distribution of θ̂ by gender and educational attainment using a non-
informative prior. Estimates are for individuals aged 18-34 and 50-64.
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Ages 18-34 lt_hs some_hs hs_grad some_col assoc_dec ba_deg grad_deg
Female 0.0684 0.0671 0.0831 0.0791 0.0611 0.0744 0.0641
Male 0.0671 0.0744 0.0744 0.0776 0.0641 0.0784 0.0668
Ages 50-64
Female 0.0763 0.0729 0.0764 0.0744 0.0687 0.0653 0.0680
Male 0.0801 0.0738 0.0652 0.0694 0.0702 0.0713 0.0652

Table 2: Estimates of the marginal distribution of θ̂ by gender and educational attainment using a strong
flat prior. Estimates are for individuals aged 18-34 and 50-64.

4. Comparing imputeMulti
In this section, we compare imputeMulti with other popular imputation methods. Specifically,
we examine bootstrap EM via Amelia Honaker et al. (2011), polytomous logistic regression
via mice van Buuren and Groothuis-Oudshoorn (2011), and predictive mean matching via
Hmisc Harrell Jr and others. (2016). The goal of the comparison is not to provide an ex-
haustive comparison of imputation methods; but to compare commonly used methods within
each package. The tract2221 dataset is again used for illustration, in this case looking at
imputation of five variables: age, gender, marital_status, edu_attain, and emp_status.
The first thing to note is that Amelia does not allow for categorical variables with greater
than ten levels, while tract2221$age has sixteen levels.

R> library("Amelia")
R> amelia_EM <- amelia(tract2221[,1:5], m = 1, noms = 1:5)

Warning message:
In amcheck(x = x, m = m, idvars = numopts$idvars, priors = priors, :

The number of categories in one of the variables marked nominal has greater
than 10 categories.
Check nominal specification.

This is one serious limitation on multivariate multinomial imputation when using a package
designed for a multivariate normal distribution. Researchers using Amelia must immediately
decide the best way to limit some of the richness of their data. None of the other three packages
have this restriction. To keep the remainder of the comparison as equivalent as possible, only
four variables are used: gender, marital_status, edu_attain, and emp_status.

4.1. Comparing algorithm speed

The microbenchmark package Mersmann (2015) is used for speed comparisons. Tests were
performed on a Intel Xeon CPU E5-2960 v3 2.60GHz server running Windows Server 2012 R2
Standard and were not run in parallel. To purely test algorithm speed, multiple imputations
are not specified for any packages that allow them.

R> library("Amelia")
R> library("Hmisc")
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R> library("imputeMulti")
R> library("mice")
R> library("microbenchmark")
R> test_d <- tract2221[,2:5]
R> microbenchmark(

EM = multinomial_impute(test_d, "EM", conj_prior = "non.informative"),
DA = multinomial_impute(test_d, "DA", conj_prior = "non.informative"),
amelia = amelia(test_d, m = 1, noms = 1:4),
hmisc = aregImpute(~ gender + marital_status + edu_attain + emp_status,

data = test_d, n.impute = 1, type = "pmm"),
mice = mice(test_d, m = 1, method = "polyreg"), times = 10L)

Unit: milliseconds
expr min lq mean median uq max neval
EM 2271.97 2279.53 2336.20 2282.18 2418.99 2532.10 10
DA 3664.21 3843.10 4328.98 4242.36 4948.12 4979.40 10
amelia 144.29 149.73 175.99 151.40 153.20 402.19 10
hmisc 682.13 688.32 822.01 819.47 945.75 997.42 10
mice 3899.12 3913.96 4091.42 3956.81 4161.81 4995.85 10

All algorithms finish in a matter of milliseconds or seconds. Amelia is clearly the fastest
algorithm, beating imputeMulti by more than an order of magnitude in this test. As expected,
EM, which stops upon convergence, is noticeably faster than DA, which must run all burnin
iterations before calculating posterior means.

4.2. Comparing outputs: Parameter estimates

Differences in the outputs of the various methods are examined next, focusing on differences
in output rather than the the statistical properties of each package. For a discussion of using
the multivariate normal to approximate multinomial data, see (Schafer 1997, Chapter 6).
For the purposes of this article, a comparison of a single commonly used method within each
package is used rather than an exhaustive comparison. As above, multiple imputations are not
specified for any packages that allow them. Functions used for these comparisons as well as
post-processing the Hmisc and mice outputs (Section 4.3) are provided in the supplementary
material to this article.

R> source("./00_JSS_suplemental_functions.R")
R> set.seed(1987543L)
R> test_dat1 <- tract2221[complete.cases(tract2221[,2:5]), 2:5]
R> test_dat2 <- createNAs(test_dat1, pctNA = 0.15)
R> rownames(test_dat2) <- 1:nrow(test_dat2)

R> IM_EM <- multinomial_impute(test_dat2, "EM",
conj_prior = "non.informative", verbose = TRUE)

R> amelia_EM <- amelia(test_dat2, m = 1, noms = c("gender",
"marital_status", "edu_attain", "emp_status"))

R> hmisc_pmm <- aregImpute(~ gender + marital_status + edu_attain +
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emp_status, data = test_dat2, n.impute = 1, type = "pmm")
R> mice_ch_eq <- mice(test_dat2, m = 1, method = "polyreg")

Amelia, mice, and Hmisc all use S3 classes for outputs. In both mice and Hmisc, the param-
eter estimates are not directly available. The parameter estimates from the amelia function
are found in amelia_EM$mu and amelia_EM$theta. This output structure fits the expecta-
tion that the data comes from a multivariate normal (eg. Y ∼ N(µ, Σ)). The output of
amelia_EM$mu is shown below.

noms.gender.2 -0.034183160
noms.marital_status.2 -0.001370118
noms.marital_status.3 0.001611829
noms.marital_status.4 -0.005067206
noms.marital_status.5 0.040268816
noms.edu_attain.2 0.014664753
noms.edu_attain.3 0.011949303
noms.edu_attain.4 0.020386341
noms.edu_attain.5 -0.024465460
noms.edu_attain.6 0.015697896
noms.edu_attain.7 0.003025067
noms.emp_status.2 -0.022108630
noms.emp_status.3 0.012268149

As is clear from the above output, when working with multivariate multinomial data using the
Amelia package, researchers are required to post-process parameter outputs to fit their needs.
It is not immediately obvious how to get specific multinomial parameter estimates or how to
marginalize these estimates, for example obtaining the marginal distribution of θ̂ by gender
and educational attainment as in Section 3.4. An additional advantage to using imputeMulti
is therefore improved ease of use for researchers interested in multinomial parameter estimates.

4.3. Comparing outputs: Observation level imputations

Observation level imputations are provided by Amelia, mice, and Hmisc. In Amelia and in
imputeMulti, imputed observations are returned in the original dataset and can be compared
directly. For both mice and Hmisc only the missing observations and their row numbers are
returned. The imputations thus require post-processing to insert the imputed values into the
original dataset containing missing values.
To test accuracy of observation level imputations, two tests are run. The first test does not
allow for multiple imputations, while the second does. To setup the tests, the complete.cases
from tract2221[,2:5] are extracted and missing values are randomly inserted. Observation
level imputation is then conducted for these datasets and the imputations were compared to
the original, fully observed, dataset. To test sensitivity to the amount of missingness in the
data, tests are run using 15%, 30%, 45%, and 60% missing values.
The first test compares accuracy of imputeMulti to a single imputation in the other meth-
ods. The second test allows ten multiple imputations and compares the accuracy of a single
imputeMulti imputation to the maximum accuracy across the ten multiple imputations using
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Percent Missing IM-EM IM-DA Amelia Hmisc mice
15% 0.7642 0.7615 0.6761 0.7077 0.7133
30% 0.5700 0.5639 0.4404 0.4833 0.4882
45% 0.4135 0.4077 0.2679 0.3166 0.3188
60% 0.2827 0.2794 0.1460 0.1908 0.1993

Table 3: Mean accuracy of observation level imputation for imputeMulti, Amelia, Hmisc, and mice using a
single imputation.

Percent Missing IM-EM IM-DA Amelia Hmisc mice
15% 0.7651 0.7615 0.6857 0.7175 0.7166
30% 0.5687 0.5645 0.4493 0.4968 0.4966
45% 0.4097 0.4070 0.2816 0.3233 0.3298
60% 0.2853 0.2857 0.1653 0.1994 0.2052

Table 4: Mean accuracy of observation level imputation for imputeMulti, Amelia, Hmisc, and mice. A single
imputation from imputeMulti is compared to the maximum accuracy from ten multiple imputations of the
comparison methods.

the other methods. Ten such tests are run for each level of inserted missingness and the mean
results are shown in Table 3 and Table 4.
Unsurprisingly, imputation accuracy degrades for each method as missingness increases. But,
in each test, imputeMulti has the highest accuracy for completely matching true observations;
and, imputeMulti maintains this advantage even against multiple imputations. The closest
comparison method was mice.

5. Conclusion
Deciding how to deal with missing values is a frequent concern for applied researchers. Al-
though many methods exist for missing value imputation, the vast majority rely on assump-
tions of multivariate normality. It is often desirable to use a model specifically designed
for the distribution from which a researcher’s data is generated. imputeMulti provides an
easily accessible model for imputing multivariate multinomial data. Further, imputeMulti
integrates easily into common analyses and handles large datasets with high performance
by providing functions for calculating sufficient statistics in C++. imputeMulti also allows
parallel processing in the case of extremely large datasets.
This article provides a hands-on introduction to the imputeMulti package as well as compari-
son to existing methods in R for multivariate multinomial imputation. As shown, the use of a
package specifically designed for multivariate multinomial imputation, such as imputeMulti,
provides exact solutions for datasets with small numbers of variables; and, for datasets with
large numbers of variables, imputeMulti may be used by splitting the variables into related
groups. In addition, imputeMulti produces higher observation level imputation accuracy as
well as providing easier access to parameter estimates.
Future development of imputeMulti is expected to focus on extending performance by mi-
grating more of the code to C++, improving the search algorithms used in calculating the
multinomial distribution sufficient statistics by implementing balanced-trees, and exploring
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further parallelization of parameter estimates. As with any parallelization effort, the tradeoff
between parallel overhead and increased utilization of multi-core computing resources must
be intelligently balanced. To date, timing tests on Windows machines, which do not allow
forking, have indicated that the parallel overhead is only justified for datasets with several
hundred thousand or more observations.
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